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Abstract

The onset condition of regular longitudinal vortex rolls in the thermal entrance region of plane Poiseuille flow heated

from below is analyzed. Under propagation theory the stability equations are produced self-similarly, based on scale

analysis. The onset position of secondary flow, which represents the starting point of mixed convection, is predicted as a

function of the Prandtl number, Reynolds number and Rayleigh number. As expected, the critical position moves

upstream as the Rayleigh number increases and an increase in Reynolds number makes the system more stable. The

present predictions compare favorably with existing experimental data of water and air.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well-known that a fluid layer becomes unstable

when buoyancy forces overcome dissipative ones caused

by viscosity and thermal conductivity. The convective

motion driven by buoyancy forces has been analyzed

extensively since B�eenard�s [1] systematic experiments and

Lord Rayleigh�s [2] theoretical analysis were reported.

Similarly to Rayleigh–B�eenard convection, secondary

motion in forms of longitudinal vortex rolls driven by

buoyancy forces can set in under forced convection. This

roll-type instability has been studied extensively in

connection with wide engineering applications such as

heat exchangers, electroplating, and chemical vapor

deposition [3]. Most of these processes involve nonlin-

ear, developing temperature or concentration profiles

and therefore, it becomes an important problem to

predict when or where the buoyancy-driven motion sets

in.

In thermally and hydrodynamically fully-developed,

plane Poiseuille flow Gage and Reid [4] showed that a

longitudinal vortex roll is a most preferred instability

mode except the case of extremely small Reynolds

numbers and its critical condition is exactly the same as

that in Rayleigh–B�eenard convection. But in the thermal

entrance region the basic temperature profile becomes

nonlinear and thermally developing in the main flow

direction. In this connection, Hwang and Cheng [5], Lee

and Hwang [6] and Kim et al. [7] conducted stability

analysis on the plane Poiseuille flow heated isothermally

from below. The last two results agree favorably with

the experimental results of Hwang and Liu [8], Kamo-

tani and Ostrach [9] and Kamotani et al. [10].

For the thermal entrance region of plane Poiseuille

flow heated from below with uniform heat flux Incrop-

era and his colleagues [11–17] investigated mixed con-

vection phenomena experimentally and numerically by

considering various effects, such as the aspect ratio and

boundary conditions. They showed that the onset posi-

tion of thermal instability is independent of the upper
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boundary condition. They determined the onset position

of instability by flow visualization and heat transfer

measurement and showed that the onset position from

flow visualization is shorter than that from heat transfer

measurement at a given Rayleigh number. Recently

Ozsunar et al. [18] conducted experiments that the onset

position of instability depends on the aspect ratio and

the onset position of instability is delayed with de-

creasing the aspect ratio for a given Rayleigh number.

To analyze the onset of regular vortex rolls in forced

convection flow propagation theory was applied to

typical channel flows [7,19]. This theory employs the

thermal boundary-layer thickness as a length scaling

factor and the linearized equations are transformed into

self-similar forms. The critical conditions are obtained

under the principle of the exchange of stabilities. In the

present study the onset condition of longitudinal vortex

rolls in the thermal entrance region of plane Poiseuille

flow heated from below with uniform heat flux is ana-

lyzed by employing propagation theory.

2. Stability analysis

2.1. Basic flow and temperature fields

The system considered here is the thermal entrance

region of plane Poiseuille flow, as shown in Fig. 1. The

fluid layer is kept at uniform at Ti for X 6 0 and heated

from below with constant heat flux qw for X > 0. The

upper boundary is kept at constant temperature Ti. The
velocity field is fully developed in the form of plane

Poiseuille flow. The temperature and velocity profiles in

this laminar forced convection flow of Newtonian fluid

can be represented in the following dimensionless forms:

U
oh0

ox
¼ o2h0

oz2
þ 1

Pe2
o2h0

ox2
; ð1Þ

U ¼ 6ðz� z2Þ; ð2Þ

with inlet and boundary conditions,

h0 ¼ 0 at x ¼ 0 and z ¼ 1; ð3aÞ

oh0

oz
¼ �1 at z ¼ 0; ð3bÞ

h0 ¼ 1� z for x ! 1; ð3cÞ

where x ¼ X=ðdPeÞ, Pe ¼ Uavd=a, z ¼ Z=d, h0 ¼ kðT �
TiÞ=ðqwdÞ and U ¼ U=Uav. Here Pe denotes the P�eeclet
number, Z the vertical distance, a the thermal diffusivity

Nomenclature

a dimensionless wave number

d fluid layer thickness

Gz Graetz number, dPe=X
k thermal conductivity

Nu Nusselt number, qwd= kDTð Þ
P pressure

p dimensionless pressure disturbance

Pe P�eeclet number, Uavd=a
Pr Prandtl number, m=a
qw bottom wall heat flux

Raq Rayleigh number, gbqwd4=ðkamÞ
Re Reynolds number, Uavd=m
T temperature

ðU ; V ;W Þ velocities in Cartesian coordinates

ðu; v;wÞ dimensionless velocity disturbances in Car-

tesian coordinates

ðX ; Y ; ZÞ Cartesian coordinates

ðx; y; zÞ dimensionless Cartesian coordinates

Greek symbols

a thermal diffusivity

DT thermal boundary-layer thickness

dT dimensionless thermal boundary-layer

thickness

f dimensionless similarity variable, z=x1=3

h dimensionless temperature disturbance,

gbd3T1=ðamÞ
h0 dimensionless basic temperature, kðT0 � TiÞ=

ðqwdÞ
k wavelength of vortex roll

r temporal growth rate

m kinematic viscosity

s dimensionless time

Subscripts

i inlet conditions

0 basic quantities

1 perturbation quantities

c critical conditions

Superscript

� transformed quantities

X
Z

X=0 constant heat flux qw

gd

rigid 

rigid 

Fig. 1. Schematic diagram of system considered here.
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and Uav the average velocity. Eq. (2) would be valid with

Re < 7200 in the present flow system under isothermal

heating [4], where Re is the Reynolds number

ð¼ Uavd=mÞ.
For a large Pe, say 100, the convective heat transfer

rate is much larger than the conduction one in the x-
direction because the value of 1=Pe2 is equal to 10�4.

Also, with Pe > 100 the relation of DT 	 d is kept due to

x ¼ X=ðdPeÞ, where DT denotes the thermal boundary-

layer thickness and in the region of Z 	 DT the velocity

field is almost linear. Therefore, the last term in Eq. (1) is

neglected in the region of small x, and U and h0 can be

approximated as

U 
 6z: ð4Þ

h0 ¼
ð1:5xÞ1=3

Cð2=3Þ exp

�"
� z3

1:5x

�
� z

ð1:5xÞ1=3
C 2=3;

z3

1:5x

� �#

¼ x1=3h�
0ðfÞ with dT ¼ 1:51x1=3; ð5Þ

where f ¼ z=x1=3 and x < 0:05. Here dT denotes the di-

mensionless thermal boundary-layer thickness with

h�
0ðfÞ=h

�
0ð0Þ ¼ 0:01, CðaÞ is a gamma function,

Cða; xÞ½¼
R1
x expð�tÞta�1 dt� is an incomplete gamma

function. With the above expression the Nusselt number

in forced convection, Nuð¼ 1=h0ðx; 0ÞÞ is obtained as

Nu ¼ Cð2=3Þ
ð1:5xÞ1=3

¼ 1:1829 RePr
d
X

� �1=3

; ð6Þ

where the Reynolds number Re has the relation of Pe=Pr,
Pr (¼ m=a) denotes the Prandtl number, and RePrd=X is

the Graetz number Gz. In general, the Leveque-type

solution agrees very well with the exact solution for

GzP 20 [20].

2.2. Disturbance equations

By following the linear stability analysis the infini-

tesimal perturbation quantities U1, T1 and P1 are su-

perimposed on the basic state quantities U0, T0 and P0 as
follows:

ðU ; T ; P Þ ¼ ½ðU0 þU1Þ; ðT0 þ T1Þ; ðP0 þ P1Þ�; ð7Þ

where U and P denote the velocity vector and the

pressure, respectively. The disturbances are usually as-

sumed to be time-dependent, three-dimensional ones.

For example, the dimensionless vertical velocity com-

ponents w can be described as

w ¼ w�
1ðx; y; zÞ exp½iðaxxþ ayyÞ þ rs�; ð8Þ

where i denotes the imaginary number, r the temporal

growth rate, and s the dimensionless time. With the

longitudinal vortex roll the amplitude function w�
1 be-

comes independent of spanwise distance y with ax ¼ 0

and r ¼ 0 while the transverse roll brings r 6¼ 0 with

ay ¼ 0. For a low Re and Ra with finite aspect ratio,

transverse rolls can set in [21]. However, for a large

P�eeclet number time-independent vortex rolls have been

observed experimentally near the critical position

[11,14–17]. In the case of isothermal heating, Kim et al.�s
[7] predictions show a fairly good agreement with Lee

and Hwang�s [6]. In the latter work the initiated distur-

bances experience the temporal growth, i.e., r 6¼ 0.

With r ¼ 0, the following dimensionless disturbance

equations are obtained by invoking linear theory under

the Boussinesq approximation:

ou
ox

þ ov
oy

þ ow
oz

¼ 0; ð9Þ

1

Pr
U
ou
ox

�
þ w

oU
oz

�
¼ � 1

Pe2
op
ox

þ 1

Pe2
o2u
ox2

þ o2u
oy2

þ o2u
oz2

;

ð10Þ

1

Pr
U
ov
ox

� �
¼ � op

oy
þ 1

Pe2
o2v
ox2

þ o2v
oy2

þ o2v
oz2

; ð11Þ

1

Pr
U
ow
ox

� �
¼ � op

oz
þ 1

Pe2
o2w
ox2

þ o2w
oy2

þ o2w
oz2

þ h; ð12Þ

U
oh
ox

þ Raq u
oh0

ox

�
þ w

oh0

oz

�
¼ 1

Pe2
o2h
ox2

þ o2h
oy2

þ o2h
oz2

;

ð13Þ

with boundary conditions,

u ¼ v ¼ w ¼ oh
oz

¼ 0 at z ¼ 0; ð14aÞ

u ¼ v ¼ w ¼ h ¼ 0 at z ¼ 1; ð14bÞ

where ðu; v;wÞ ¼ ðU1=Pe; V1;W1Þd=a, h ¼ gbd3T1=ðamÞ,
and p ¼ P1d2=ðamÞ. Here g denotes the gravitational ac-

celeration, b the thermal expansion coefficient, and m the
kinematic viscosity. It should be noted that the tem-

perature disturbance has been nondimensionalized by

am=ðgbd3Þ rather than DT . The most important param-

eter Raq is the Rayleigh number based on the bottom

heat flux qw, which is defined as

Raq ¼
gbqwd4

kam
: ð15Þ

This is sometimes called the dimensionless heat flux.

With Pe > 100 all the terms involving 1=Pe2 in Eqs.

(10)–(13) are neglected like the treatment of Eq. (1). This

procedure is analogous to the conventional boundary

layer theory. But the resulting equations are still com-

plicated. To examine the thermal instability of the pre-

sent system the minimum value of x should be found for

a given Pr and Raq. This means that a fastest growing

instability would set in at the critical streamwise posi-

tion Xc. Most of early studies on this kind of stability

problem employed the assumption that disturbances
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would not experience variations in the streamwise di-

rection, i.e., oð�Þ=ox ¼ 0. This model is called local sta-

bility analysis. In propagation theory this assumption is

removed and it takes the streamwise propagation of

disturbances into consideration.

2.3. Propagation theory

Propagation theory employed to find the dimensional

critical streamwise position Xc to mark the onset of

convective motion is based on the assumption that dis-

turbances are propagated mainly within the dimensional

thermal boundary-layer thickness DTð	 dÞ at Xc � DT.

In this case the following scale analysis at X 
 Xc would

be valid for dimensional perturbed quantities of Eqs.

(12) and (13), respectively:

m
W1

D2
T

� gbT1; ð16Þ

W1

oT0
oZ

� a
T1
D2

T

: ð17Þ

From Eqs. (16) and (17) the following peculiar relation

is obtained:

W1 �
gbD2

T

m
T1; ð18Þ

oT0
oZ

� am

gbD4
T

� qw
k

gbqwD4
T

kam

� ��1

¼ qw
k
Ra�1

DT
; ð19Þ

where RaDT
is the Rayleigh number based on the length

DT and the bottom heat flux qw. With increasing bottom

heat flux qw, both the critical position Xc and the cor-

responding DT decreases while oT0=oZjZ¼0 increases. The

order of magnitude of kðoT0=oZÞ=qw becomes equivalent

to that of Ra�1
DT

and RaDT
is assumed to reach a constant

for small Xc.

The above relations are nondimensionalized as

w

d2
T

� h; ð20Þ

Raqw
oh0

oz
� h

d2
T

: ð21Þ

This means that buoyancy-driven convection occurs

due to h and this incipient secondary flow is very weak at

x ¼ xc. The resulting order of oh0=ozjx¼xc from the above

relations would be consistent with that of Eq. (19) if

Raqd
4
T is a constant for dT 	 1. In this viewpoint the

basic temperature and its perturbation have been non-

dimensionalized having different scales. Based on the

above relations, the relations of w ¼ dnþ2
T w� and

h ¼ dn
Th

� can be obtained. For nP 0, the case of n ¼ 0

gives a lower bound of Raq in the plot of Raq vs. a [22].

The case of n < 0 is not rational since h ! 1 as x ! 0.

In the present study n is set to zero because the fastest

growing disturbances which give the minimum value of

Raq are to be found. Similar treatment can be found in

thermal instability analyses of various systems [23–26].

For incipient longitudinal vortex rolls we assume that

steady disturbance quantities are periodic with the di-

mensionless spanwise wave number a. From the conti-

nuity equation of Eq. (9), the following scaling relation

can be obtained:

u=x � av � w=dT; ð22Þ

Since dTð/ x1=3Þ or x is small in the thermal entrance

region considered here, the relation of juj 	 jwj is kept
but jou=oxj has the same order of magnitude as jow=ozj.
The scaling relation of av � w=dT is a peculiar one

suggested here. It is believed that this scaling is more

reasonable than others. For example, Chen and Chen

[27] assumed that both v and w would have the same

form. Similar scale analysis on p can be conducted

through Eq. (12). Based on the above scaling, the dis-

turbance quantities are expressed as

uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ
pðx; y; zÞ
hðx; y; zÞ

2
66664

3
77775 ¼

x4=3u�ðfÞ
ðx1=3=aÞv�ðfÞ
x2=3w�ðfÞ
x1=3p�ðfÞ

h�ðfÞ

2
66664

3
77775 expðiayÞ: ð23Þ

Substituting Eq. (23) into Eqs. (9)–(13) with PeP 100,

we can obtain the new stability equations using Eqs. (4)

and (5) for small x:

ðD2 � a�2Þu� ¼ 1

Pr
ð8fu� � 2f2Du� þ 6w�Þ; ð24Þ

ðD2 � a�2Þ2w� ¼ a�2h� � 1

3
fD4u� þ a�2Du� � 1

3
fa�2Du�

þ 1

Pr
2

4

3
u�

��
� 1

3
fDu� þ Dw�

�

� 2f Du�
�

� 1

3
fD2u� þ D2w�

�

� 2f2
2

3
Du�

�
� 1

3
fD3u� þ D3w�

�

� 4fa�2w� þ 4f2a�2Dw�
�
; ð25Þ

ðD2 � a�2Þh� ¼ �2f2Dh�

þ Ra� w�Dh�
0

�
� 1

3
fu�Dh�

0 þ
1

3
u�h�

0

�
;

ð26Þ

with the following boundary conditions,

u� ¼ w� ¼ Dw� ¼ Dh� ¼ 0 at f ¼ 0; ð27aÞ

u� ¼ w� ¼ Dw� ¼ h� ¼ 0 as f ! 1; ð27bÞ

where D ¼ d=df, a� ¼ ax1=3 and Ra� ¼ Raqx4=3. It is

noted that the above condition of fð¼ z=x1=3Þ ! 1 is
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obtained as x ! 0. Since Ra� � RaDT
and a � 1=dT, the

parameters Ra� and a� based on the length scaling factor

x1=3 are assumed to be eigenvalues.

Now, h�
0, u

�, w� and h� in Eqs. (24)–(27) are functions

of f only and their treatment like the similar transfor-

mation is possible. The principle of the exchange of

stabilities is employed and the minimum value of Ra� for
a given Pr is sought. In other words, the minimum of x,
i.e., xc is found for a given Raq and Pr. The above whole
procedure is essence of the propagation theory we have

developed. The propagation theory may be called the

extension of local stability analysis. If Eqs. (1) and (2)

are used directly, the above transformation is not pos-

sible and mathematical difficulties will be encountered.

In this case the relationship of dT � x1=3 is not kept and
therefore the above similar transformation is not possi-

ble. Even though the present approximation produces

rather simple disturbance equations, Kim et al. [7]

showed that in an isothermally heated system the pre-

dictions agree well with experimental data.

In the local stability analysis x is fixed in coordinates

x and z in the disturbance equations, i.e., oð�Þ=ox ¼ 0.

This results in the stability equation:

d2

dz2

�
� a2

�2

w1 ¼ a2h; ð28Þ

Raqw
oh0

oz
¼ o2h

oy2
þ o2h

oz2
; ð29Þ

wherein x is the parameter. It is stated that the essential

difference between local stability analysis and propaga-

tion theory comes from the different coordinate frames,

i.e., ðx; zÞ and ðx; fÞ, in amplitude functions. For the

present system the stability equations of local stability

analysis reduce to:

ðD� a�2Þ2w� ¼ a�2h�; ð30Þ

ðD2 � a�2Þh� ¼ Ra�w�Dh0; ð31Þ

under the following boundary conditions,

w� ¼ Dw� ¼ Dh� ¼ 0 at f ¼ 0; ð32aÞ

w� ¼ Dw� ¼ h� ¼ 0 at f ¼ 1=x1=3: ð32bÞ

2.4. Solution method

The above stability equations were solved by em-

ploying the outward shooting scheme of Chen and Chen

[27]. In order to integrate these stability equations the

proper values of Du�, D2w�, D3w� and h� at f ¼ 0 were

assumed for a given Pr and a�. Since the stability

equations and the boundary conditions are all homog-

enous, the value of D2w� at f ¼ 0 can be assigned arbi-

trarily and the value of the parameter Ra� is assumed.

This procedure can be understood easily by taking into

account characteristics of the eigenvalue problem. After

all the values at f ¼ 0 are provided, this eigenvalue

problem can be proceeded numerically with the step size

of Df ¼ 0:001.
Integration is performed from the heated surface

f ¼ 0 to a fictitious outer boundary with the fourth-

order Runge–Kutta–Gill method. If the guessed value of

Ra�, Du�ð0Þ, D3w�ð0Þ and h�ð0Þ are correct, u�, w�, Dw�

and h� will vanish at the upper boundary. To improve

the initial guesses the Newton–Raphson iteration was

used and relative errors were taken as convergence cri-

teria. When all the relative errors were less than 10�10,

the outer boundary was increased by a predetermined

value and the above procedure was repeated. Since the

disturbances decay exponentially outside the thermal

boundary layer, incremental change in Ra� also decays

fast with an increase in outer boundary depth. This

behavior enables us to extrapolate the eigenvalue Ra� to
the infinite depth by the Shank transformation [28]. For

example, with Pr ¼ 100 the asymptotic depth was

reached at f ffi 6, which will be shown later. This means

that the boundary condition of f ! 1 in Eq. (27) was

satisfied at this vertical distance. The effect of integration

depth on the critical condition was treated intensively by

Chen [29], Chen et al. [30] and Kim [22]. They showed

that the present extrapolation by the Shanks transfor-

mation is a good approximation method to treat the

infinite outer boundary.

3. Results and discussion

The predicted values based on the above numerical

scheme constitute the stability curve, as shown in Fig. 2.

All these results with respect to regular longitudinal

vortex flow would be valid with the assumption of

DT 	 d. The calculated stability criteria of the minimum

Ra�, i.e., Ra�c are obtained and listed in Table 1. It seems

0.0 0.5 1.0 1.5 2.0 2.5 3.0
102

103

104

105

106

8

100

10
1

0.1

Pr = 0.01

Fig. 2. Neutral stability curves for various Pr�values.
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evident that Ra�c increases with a decrease in Pr and the

Pr� effect becomes pronounced for Pr < 1. This means

that the inertia forces make the system more stable. This

trend is shown clearly in Fig. 3. As Pr ! 0 we can expect

that the wave mode instability may prevail and the

present analysis cannot be applied.

Based on Table 1, the correlation for Ra�c with Pr is

obtained first. And then, by using the relation of

Ra� ¼ Raqx4=3 and x ¼ X=ðd RePrÞ, the dimensional

critical position Xc for a given Raq can be represented

by the following correlation:

xc ¼
Xc=d
PrRe

¼ 206:17

Raq
1

��
þ 0:7

Pr0:8

��3=4
; ð33Þ

which represents the predictions very well with the error

bound of 3% for PrP 0:01, Peð¼ PrReÞP 100 and

xcð¼ Xc=ðdPeÞÞ6 0:05. Our analysis is based on the as-

sumption that Re < 7200 and Pe > 100. So, it should be

kept in mind that the present analysis is limited to the

system of Pr > 0:013ð¼ 100=7200Þ. The dimensionless

critical position xc to mark the onset of longitudinal

vortex rolls becomes smaller with an increase in Raq and
Pr. For a given Re and Raq the dimensional position Xc

becomes larger with an increase in Pr. The Reynolds

number delays the onset of longitudinal vortex rolls.

Incropera and his colleagues [13–18] reported their

experimental data of thermal instability that the onset of

secondary flow precedes appreciable heat transfer mea-

surement. In Fig. 4, their data of water and air are

compared with the present critical conditions (Table 1):

xc ¼ 60:16Ra�3=4
q and

ac ¼ 0:319Ra1=4q for Pr ¼ 7; ð34aÞ

xc ¼ 87:18Ra�3=4
q and

ac ¼ 0:323Ra1=4q for Pr ¼ 0:7: ð34bÞ

It is shown that the present predictions from propa-

gation theory provide lower bounds in the whole ex-

perimental range and the difference between water and

air is not so large. For Raq > 105 the predictions from

the local stability analysis are about two orders of

magnitude lower than those from propagation theory

but the difference becomes smaller as Raq decreases. Eq.
(34a) is comparable with the numerical results of Mau-

ghan and Incropera [15]. Secondary flow is possible for

Raq P 1296. For Raq ¼ 1296 the flow and temperature

fields are fully developed with ac ¼ 2:55.
At experimental environments the boundary imper-

fection exist and therefore, the experimental data scatter

rather widely, as shown in Fig. 4. But the trend supports

the present predictions to a certain degree. The predicted

ac for Pr ¼ 7 is compared with the experimental data of

water in Fig. 5. The present critical wave number shows

good agreement with the last four data points of Mau-

ghan and Incropera [15]. For Raq 6 107, less than 10

vortex pairs were observed in experiments of the aspect

ratio of about 10. The large discrepancy of the first two

points from predictions may be attributed to the side

wall effects. In both laminar forced convection [31] and

Table 1

Numerical values of Ra�c and a�c for various Pr––values

Pr 0.01 0.1 0.7 1 7 10 100 1
Ra�c 5769.30 1113.10 410.11 360.41 236.62 227.93 208.86 206.17

a�c 1.79 1.67 1.50 1.46 1.26 1.23 1.15 1.14

10-2 10-1 100 101 102 103
102

103

104

calculated results
Eq. (33)

Fig. 3. Effect of Prandtl number Pr on critical condition.

10-5 10-4 10 -3 10-2 10-1

104

105

106

107

108

109

local stability
analysis

present study (Pr= 0.7)
air experiments

Maughan and Incropera [16]
Maughan and Incropera [17]
Ozsunar et al. [18]

present study (Pr= 7)
water experiments

Incropera et al. [13]
Incropera et al. [14]
Maughan and Incropera [15]

Fig. 4. Comparison of critical Rayleigh numbers with previous

results.

2634 M.C. Kim et al. / International Journal of Heat and Mass Transfer 46 (2003) 2629–2636



Rayleigh–B�eenard convection [32] of low Ra, patterns of
incipient natural convection is strongly influenced by the

side wall effects. The present system leads to the plane

Couette flow for small x. For this flow system of the

upper free boundary, Choi [33] conducted water exper-

iments of uniform heat flux with the aspect ratio of

about 50 and his experimental data points agree well

with the present predictions from propagation theory, as

shown in Fig. 5. The related stability analysis is sum-

marized in the work of Choi and Kim [19]. It is stated

that the present work complements their work.

The above reasoning supports, to a certain degree,

that propagation theory provides rather reasonable

critical conditions to mark secondary flow in form of

regular longitudinal rolls. Therefore, their amplitude

functions need to be examined in detail. At the critical

conditions illustrated above, the amplitude functions of

w� and h� are featured in Fig. 6, wherein the quantities

have been normalized by the corresponding maximum

magnitude w�
max and h�

max. It is seen that incipient tem-

perature disturbances are confined mainly within the

dimensionless thermal boundary-layer thickness

dTð¼ 1:51x1=3Þ but velocity disturbances are driven more

upward over the thermal boundary-layer thickness with

increasing Pr. As Pr decreases, the vertical position

showing w�
max, i.e., fjw�

max
moves to the heated surfaces.

Also, the dimensionless hydrodynamical boundary-layer

thickness fjw�
0:01

is larger than the thermal one fjh�
0:01
,

where the boundary-layer thickness is defined as the

depth to exhibit the normalized magnitude of 0.01. This

means that the secondary motion of vortex rolls is

driven thermally.

4. Conclusion

The critical condition of the onset of secondary flow

in form of regular longitudinal vortex rolls in the ther-

mal entrance region of plane Poiseuille flow heated

uniformly from below has been analyzed based on

propagation theory. It is interesting that the onset po-

sition Xc moves downstream with an increase in Prandtl

number and Reynolds number. The present predictions

agree reasonably well with the existing experimental

data of water and air. It may be stated that our propa-

gation theory is a useful tool to analyze the buoyancy-

driven instabilities in laminar forced convection flow.
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